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ABSTRACT

Progressive osseous heteroplasia (POH) is a recently described genetic disorder of mesenchymal differentia-
tion characterized by dermal ossification during infancy and progressive heterotopic ossification of cutaneous,
subcutaneous, and deep connective tissues during childhood. The disorder can be distinguished from fibro-
dysplasia ossificans progressiva (FOP) by the presence of cutaneous ossification, the absence of congenital
malformations of the skeleton, the absence of inflammatory tumorlike swellings, the asymmetric mosaic
distribution of lesions, the absence of predictable regional patterns of heterotopic ossification, and the
predominance of intramembranous rather than endochondral ossification. POH can be distinguished from
Albright hereditary osteodystrophy (AHO) by the progression of heterotopic ossification from skin and
subcutaneous tissue into skeletal muscle, the presence of normal endocrine function, and the absence of a
distinctive habitus associated with AHO. Although the genetic basis of POH is unknown, inactivating
mutations of the GNAS1 gene are associated with AHO. The report in this issue of theJBMR of 2 patients with
combined features of POH and AHO—one with classic AHO, severe POH-like features, and reduced levels of
Gsa protein and one with mild AHO, severe POH-like features, reduced levels of Gsa protein, and a mutation
in GNAS1—suggests that classic POH also could be caused by GNAS1 mutations. This possibility is further
supported by the identification of a patient with atypical but severe platelike osteoma cutis (POC) and a
mutation in GNAS1, indicating that inactivating mutations in GNAS1 may lead to severe progressive
heterotopic ossification of skeletal muscle and deep connective tissue independently of AHO characteristics.
These observations suggest that POH may lie at one end of a clinical spectrum of ossification disorders
mediated by abnormalities in GNAS1 expression and impaired activation of adenylyl cyclase. Analysis of
patients with classic POH (with no AHO features) is necessary to determine whether the molecular basis of
POH is caused by inactivating mutations in the GNAS1 gene. (J Bone Miner Res 2000;15:2084–2094)
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HOW WAS POH DISCOVERED?

IN AN ARTICLE in Science, 1996, Claire O’Brien wrote,
“New diseases do not suddenly present themselves, ready

labeled, in a new patient. They emerge slowly from the
collection and interpretation of clinical observations and
physiological measurements.”(1) Such is the case with pro-
gressive osseous heteroplasia (POH), which was first de-
scribed in 1994.(2)

Before describing exactly what POH is, it will be helpful
to understand what it is not. The recognition of POH as a
distinct disorder of heterotopic ossification arose over a
5-year period (1989–1994) during which time one of us
(F.S.K.) evaluated more than 125 patients with fibrodyspla-
sia ossificans progressiva (FOP), a rare and devastating
genetic disorder of progressive heterotopic ossification, re-
cently associated with overexpression of bone morphoge-
netic protein 4 (BMP-4).(3–10)The classic phenotype of FOP
includes a diagnostic triad: congenital malformation of the
great toes; progressive heterotopic ossification of skeletal
muscles, tendons, ligaments, and fascia through an endo-
chondral process; and progression of disease activity in
characteristic anatomic patterns (dorsal to ventral, axial to
appendicular, cranial to caudal, and proximal to distal)
(Figs. 1-3). Although the timing, severity, and rate of pro-
gression of postnatal heterotopic ossification varies consid-
erably among affected individuals, the classic triad of dis-
ease activity is nearly inviolate.(11–18)

Among the children examined at our center with a pre-
liminary diagnosis of FOP by the referring physician were
those with a clinical phenotype distinct from FOP. Although
these children suffered from progressive heterotopic ossifi-
cation, they clearly were afflicted with something other than
FOP (Table 1). How could we be so certain? First, none of
the children had malformations of the great toes, a nearly
ubiquitous feature in FOP. Although many had digital de-
formities in the feet, all of the deformities had developed
secondary to progressive ossification of soft tissues and
none were congenital.(2,19) By contrast, congenital malfor-
mations of the great toes are characteristic of FOP.(12,18)

Second, all of the children had ossification of the skin in
infancy, a feature not seen in FOP (Fig. 1A). Third, none of
the children developed preosseous tumorlike swellings, a
nearly universal finding in FOP (Fig. 1B). Fourth, all of the
affected children suffered from progression of heterotopic
ossification into deep connective tissues, including fascia
and skeletal muscle, in a process of ossification that was
primarily intramembranous rather than endochondral as had
been described in FOP (Fig. 2).(4) Fifth, the evolving radio-
graphic pattern of heterotopic ossification in the children we
evaluated was clearly different from anything previously
described in FOP. Radiographs in children with this distinc-
tive form of progressive heterotopic ossification revealed a
cocoonlike web of heterotopic bone entangling the soft
connective tissues from the dermis down through the skel-
etal muscle in a manner completely reckless to the fidelity
of tissue planes (Figs. 3A–3C).(2) By contrast, radiographs
in children with FOP showed distinct well-circumscribed
areas of deep heterotopic ossifications that often corre-
sponded to a distinct skeletal muscle (Fig. 3D).(20)

Cutaneous and subcutaneous ossification is a well-
recognized, although variable, feature of Albright hereditary
osteodystrophy (AHO),(21,22) but the children we evaluated
had no other morphological manifestations of AHO or any
evidence of hypocalcemia, pseudohypoparathyroidism, hy-
pothyroidism, or hormone resistance.(23–29) Moreover, no
family member of an affected child suffered from AHO or
pseudohypoparathyroidism. Could the ossification in the
skin have been a secondary manifestation of a focal derma-
tological disorder, a soft tissue injury, a vascular malforma-
tion, or an underlying arthropathy, conditions all known to
predispose to dermal ossification?(14,30–33) None of those
clinical considerations seemed to be germane in the children
we evaluated, because the ossification process was not lim-
ited to the skin but progressed into subcutaneous fat and
deep connective tissues.

Primary dermal ossification is rarely seen in child-
hood,(33–37) and primary dermal ossification during child-
hood with progressive involvement of deep connective tis-
sue is exceedingly rare. In fact, we were able to find only
five case reports in the English language medical literature
of the 20th century.(38–42) Among these few case reports,
the following diagnoses had been made: disseminated con-
genital osteomas,(38) localized tissue malformation or het-
erotopia,(39) dysplastic cutaneous osteomatosis,(42) limited
dermal ossification,(40) and familial ectopic ossification.(41)

In addition, there were several incomplete or ambiguous
reports and many that implicated secondary causes of ossi-
fication. Many reported cases of primary cutaneous ossifi-
cation were actually mild variants of AHO.

After conducting a review of the literature, we attempted
to contact as many of the original patients as possible to
confirm the diagnosis and to provide follow-up.(2) Although
all of the patients in this original series were female, several
more discovered recently have been male,(19,43) and the
female gender bias seems less prominent than it did origi-
nally.(2) The diagnostic description of POH in 1994 was
made on the basis of the unique clinical, roentgenographic,
and histopathological findings and on the basis of the nat-
ural history encountered in the children we evaluated. The
unique constellation of clinical, pathological, and roentgen-
ographic features that characterized POH justified its con-
sideration as a distinct developmental disorder of mesen-
chymal differentiation and heterotopic ossification in
humans.

WHAT IS POH?

POH is a developmental disorder of mesenchymal differ-
entiation characterized by dermal ossification during in-
fancy and by progressive heterotopic ossification of cutane-
ous, subcutaneous, and deep connective tissue during
childhood (Table 1).(2) The disorder can be distinguished
from FOP by the presence of cutaneous ossification, by the
absence of congenital skeletal malformations, by the asym-
metric mosaic distribution of lesions, by the absence of
predictable regional patterns of heterotopic ossification, and
by the predominance of intramembranous rather than endo-
chondral ossification (Table 1).(14)
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POH can be distinguished from AHO by the progression
of heterotopic ossification from skin and subcutaneous tis-
sue into skeletal muscle, by the absence of morphological
features associated with AHO, and by the presence of nor-
mal endocrine function (Table 1). As with many newly
described and extremely rare conditions, POH probably is
underdiagnosed. Careful consideration of clinical and radio-
graphic signs usually is enough to recognize the disorder
and to differentiate it from FOP and AHO. There have been
16 case reports of POH: 13 in females and 3 in
males.(2,19,43–48)At present, we are aware of an additional
13 patients of both genders (4 females and 9 males).

The first sign of POH occurs during infancy with the
appearance of islands of heterotopic bone in the reticular
dermis and subcutaneous fat. Over time, the islands of
heterotopic bone coalesce into plaques with subsequent
involvement of the deeper connective tissues including fas-
cia, skeletal muscle, tendon, and ligament. Extensive ossi-
fication of the deep connective tissues results in ankylosis of
affected joints and focal growth retardation of involved
limbs.(2,19,43,44)At times, small spicules of dermal bone can
protrude through the epidermis, although bone formation
does not originate in the epidermis. Occasionally, involve-
ment of the subcutaneous fat and deep connective tissues

FIG. 1. Early clinical appearance of severe heterotopic ossification in POH and FOP. (A) Posterior aspect of the left leg
and popliteal fossa of a 5-year-old child with POH. Note the severe maculopapular lesions that correspond to extensive
dermal and subcutaneous ossification. (Reprinted with permission from Kaplan FS, Hahn GV, Zasloff MA, 1994.(14)) (B)
Back of a 4-year-old child with FOP. Note the characteristic subfascial nodules that correspond to preosseous fibropro-
liferative lesions and heterotopic ossification evolving through an endochondral process. (Reprinted with permission from
Kaplan FS, Tabas JA, Gannon FH et al., 1993.(4))
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may precede dermal involvement. Rarely, there may be
deeper involvement without any cutaneous or subcutaneous
involvement at a particular site.

Some cases of POH appear sporadic, whereas some are
familial.(2) Offspring of affected individuals can inherit the
disease in an autosomal dominant manner with widely variable
expression.(2,43) The absence of large multigenerational fami-
lies impedes gene identification by linkage analysis and posi-
tional cloning, but linkage exclusion analysis and mutational
analysis with promising candidate genes is certainly possible.
The etiology and pathogenesis of POH remain unknown.

WHAT IS THE PATHOLOGY OF POH?

Heterotopic ossification in POH occurs predominantly
through an intramembranous pathway (Fig. 2; Table
2).(2,19,43,44,46)Two reports of POH describe islands of en-
dochondral ossification in the deep connective tissue with
the sporadic appearance of marrow elements.(45,47) Hetero-

topic ossification through an endochondral pathway also has
been described in POH after unsuccessful attempts at sur-
gical ablation of deep heterotopic ossification.(2)

The results of routine laboratory studies in POH usually
are normal, although elevated levels of serum alkaline phos-
phatase have been observed during phases of progressive
heterotopic osteogenesis. Typically, serum levels of cal-
cium, inorganic phosphate, parathyroid hormone (PTH),
and vitamin D metabolites are normal, although transient
abnormalities have been noted in rare instances.(47) Elevated
serum levels of lactate dehydrogenase (LDH) and creatine
phosphokinase (CPK) have been observed and may reflect
bone deposition in skin and skeletal muscle.(46,47)

WHAT IS THE DEVELOPMENTAL BIOLOGY
OF POH?

The anatomic distribution of lesions in POH suggests that
the pathogenesis may involve the presence of a mutant gene

FIG. 2. Histopathology of predominant pathways of heterotopic ossification in POH and FOP. (A) Medium-power
photomicrograph of a POH lesion shows intramembranous ossification arising from subcutaneous fat. Note the irregular
deposits of woven and lamellar bone surrounded by adipose tissue. Arrows indicate osteoclasts; arrowheads indicate
osteoblasts (hematoxylin-eosin; original magnification,3200). (B) Medium-power photomicrograph of an intermediate-
stage FOP lesion shows endochondral ossification. Arrows indicate osteoblasts; C, cartilage (hematoxylin-eosin; original
magnification,3125; A and B reprinted with permission from Kaplan FS, Hahn GV, Zasloff MA, 1994.(14))
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in mesenchymal stem cells destined for widespread distri-
bution.(2) Observations in patients with POH suggest that
such mesenchymal stem cells or more committed osteo-
genic precursor cells are present in skin, subcutaneous fat,

muscle, tendon, and ligament tissue. Also, the intramem-
branous bone formation that occurs in subcutaneous fat in
patients with POH provides evidence for a close relation-
ship between adipogenesis and osteogenesis in peripheral

FIG. 3. Radiographic appearance of severe hetero-
topic ossification in POH and FOP. (A–C) Lateral
serial roentgenograms of the leg of a child with POH
show progressive heterotopic ossification of the soft
tissues when the child was (A) 18 months old and (B)
30 months old. Lateral roentgenogram of the ampu-
tation specimen (C) shows extensive ossification of
the soft tissues of the superficial and deep posterior
compartments of the leg. There is severe disuse os-
teopenia and anterior bowing of the tibia. (A–C re-
printed with permission from Kaplan FS, Craver R,
MacEwen GD et al., 1994.(2)) D. Lateral radiograph
of the knee in a patient with FOP shows well-
developed heterotopic bone in the popliteal fossa with
distinct cortical features. The heterotopic bone ap-
pears to have formed a pseudoarticulation, but the
patient progressed to form complete bony ankylosis
over the next year during a subsequent flare-up of
disease activity. (Reprinted with permission from
Kaplan FS, Strear CM, Zasloff MA, 1994.(20))
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tissues, a phenomenon well documented in bone marrow
stromal cells(49–54) and in immortalized mesodermal pro-
genitor cells.(55)

Many animals (living and extinct) have been known to
form primary dermal ossification as part of a normal devel-
opmental defense mechanism.(56) However, we are unaware
of any naturally occurring animal models of progressive
heterotopic ossification that specifically recapitulate the nat-
ural history and pathology of POH.

WHAT IS THE PROGNOSIS AND
TREATMENT FOR PATIENTS

WHO HAVE POH?

Presently, there are no effective treatments or preven-
tions for POH. Areas of well-circumscribed heterotopic
ossification often can be removed successfully without
recurrence. However, the extensive coalescence of ossi-
fied skin plaques and the slow relentless progression of
deep heterotopic ossification pose perplexing therapeutic
dilemmas. One child successfully underwent functional

repositioning of a joint after the development of a joint
contracture from heterotopic ossification.(19) Two other
children underwent amputations (one of a lower limb(2)

and another of a nondominant index finger(44) as a result
of severe growth retardation and complete loss of func-
tion of the affected part.

The surgical removal of POH tissue has led to recurrence
in most patients, notably when the heterotopic ossification is
diffuse and weblike rather than focal. One patient(45) en-
countered extensive bleeding during an unsuccessful at-
tempt to remove recurrent heterotopic bone and subse-
quently died from complications arising from the surgery
(Dr. Roger Smith, personal communication, 1998).

It is important for geneticists, dermatologists, pediatri-
cians, pathologists, and orthopedic surgeons to be aware of
POH so that unnecessary treatments can be avoided, and
proper counseling can be offered.(57) The long-term prog-
nosis of POH is uncertain because only a few patients have
been followed beyond adolescence, but in these few pa-
tients, the disease has followed a course of slower progres-
sion during adulthood.

TABLE 1. CLINICAL FEATURES OFHETEROTOPICOSSIFICATION IN POH, FOP,AND AHO

Feature POH FOP AHO

Sex distribution Female5 male Female5 male Female5 male
Genetic transmission Autosomal dominant Autosomal dominant Autosomal dominant
Congenital malformation of great toes 2 1 2
Congenital papular rash 1 2 2
Cutaneous ossification 1 2 6
Subcutaneous ossification 1 2 6
Muscle ossification 1 1 2
Superficial to deep progression of ossification 1 2 2
Severe limitation of mobility 1 1 2
Severe flare-ups of disease 2 1 2
Ectopic ossification after intramuscular injections 2 1 2
Ectopic ossification after trauma 6 1 2
Regional patterns of progression 2 1 2
Definitive treatment available 2 2 2

TABLE 2. PATHOLOGICAL AND LABORATORY FEATURES OFPOH, FOP,AND AHO

Feature POH FOP AHO

Predominant mechanism
of ossification

Intramembranous Endochondral Intramembranous

Inflammatory perivascular
and muscle infiltrate

2 1 2

Hematopoietic marrow in
ectopic bone

6 1 2

PTH resistance 2 2 1
Hypocalcemia and

hyperphosphatemia
2 2 1

Pathogenesis Unknown Associated with
increased expression
of BMP-4

Unknown

Genetic mutations Unknown Unknown Inactivating mutation ofa-subunit of G-stimulatory
protein of adenylyl cyclase
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DO AHO AND G PROTEINS HOLD A CLUE
TO THE PATHOGENESIS OF POH?

AHO is an autosomal dominant disorder of the skin,
skeletal, and endocrine systems, with variable features that
may include pseudohypoparathyroidism, multiple hormone
resistance, obesity, brachydactyly (especially fourth and
fifth metacarpals), short stature, round facies, and cutaneous
and subcutaneous ossification (Table 1).(22–26,28,58–70)Al-
though patients with POH do not show the developmental
dysmorphologies and hormone resistance that commonly
are associated with AHO, cutaneous and subcutaneous os-
sification of the skin in childhood is rare, and therefore the
possibility that the heterotopic ossification in these two
conditions might involve the same cellular pathways is a
reasonable consideration.

In most patients with AHO, the disease is caused by
heterozygous mutations in GNAS1,(26,59–61,63–72)a gene on
human chromosome 20 encoding thea-subunit of the stim-
ulatory G protein of adenylyl cyclase (Gsa). Patients with
AHO have a 50% reduction in the expression (both the long
and short forms of Gsa are equally reduced(59)) or activity of
Gsa in plasma membranes of multiple cell types.(65) This
genetic defect leads to the impaired activation of adenylyl
cyclase and impaired cyclic adenosine monophosphate
(AMP)–mediated signal transduction.

Functional inactivation of Gsa leads to the multiple organ
hormone resistance and variable phenotypic features in pa-
tients who have AHO (Table 2).(26,59–61,63–72)Family mem-
bers of patients with pseudohypoparathyroidism who have a
body habitus of AHO but who lack hormone resistance are
described as having pseudopseudohypoparathyroidism.(73)

The remarkable complexity of allele-specific imprinting of
the GNAS1 gene in selective tissues may, at least in some
cases, underlie the often dramatic phenotypic variability,
such as the presence or absence of hormone resistance,
among family members who may harbor the identical
mutation.(65,74–82)

PTH and PTH-related protein (PTHrP) use a common cell
membrane receptor linked to Gsa.(83–86) The normal phys-
iological roles of the common receptor include not only
calcium homeostasis but also embryonic bone and cartilage
development(83,85,87–92) and osteoblast regulation.(85,93,94)

Inactivating mutations in the GNAS1 gene could disrupt
embryonic signal transduction of PTHrP and plausibly con-
tribute to the short stature, brachydactyly, and subcutaneous
ossification seen in patients who have AHO.(72) However,
the exact molecular pathophysiology by which inactivating
mutations in the GNAS1 gene lead to heterotopic ossifica-
tion of the dermis and subcutaneous fat in patients with
AHO is unknown.

IS THERE A CONNECTION BETWEEN AHO
AND SEVERE POH-LIKE HETEROTOPIC

OSSIFICATION?

Cutaneous and subcutaneous ossification occur com-
monly in patients who have AHO and POH, but progressive

ossification of deep connective tissues is not known to occur
in patients who have AHO. However, a report in this issue
of the Journal(95) describes two unusual cases of children
who have both AHO and severe POH-like heterotopic os-
sification. One child, with classic AHO and severe POH-
like features, has 50% activity of the Gsa protein without
any detected mutation in GNAS1, while the other, with mild
AHO and POH-like features, has 50% activity of the Gsa
protein with an inactivating mutation in GNAS1, providing
an explanation for the AHO features that are expressed in
these children. Although it is possible that the AHO- and
POH-like phenotypes of these children are caused by mu-
tations in different genes, the presence of deep and progres-
sive heterotopic ossification in children with variable
features of AHO suggests that a common molecular mech-
anism may be responsible for their heterotopic ossification.

Further evidence for a connection between GNAS1 and
heterotopic ossification has been found in a child who has
no evidence of AHO or hormone resistance but who has
severe atypical congenital platelike osteoma cutis (POC)
and a GNAS1 mutation.(96) Although this POC patient
shows a substantially different distribution and extent of
heterotopic bone formation compared with classic POH,
this case shows that an inactivating mutation in GNAS1 can
lead to heterotopic ossification in the absence of expression
of AHO features. Interestingly, the mutation identified in
this POC patient is identical to a mutation that previously
has been found in AHO.(70,97,98)

The three reported cases of atypical severe dermal ossi-
fication described in this issue of the Journal indicate that
inactivating mutations of GNAS1 are present in patients
with progressive heterotopic ossification. Further analysis
of a wide sample of patients with classic POH (i.e., with no
AHO features) is necessary to determine whether the mo-
lecular basis of POH is caused by inactivating mutations of
the GNAS1 gene, and those studies are underway.

WHAT ARE THE LESSONS OF A RARE
DISEASE LIKE POH?

These three atypical cases(95,96) suggest that inactivating
mutations in GNAS1 can lead not only to cutaneous and
subcutaneous heterotopic ossification in AHO, but also to a
phenotype of severe progressive heterotopic ossification
within skeletal muscle and deep connective tissue. The
exact mechanism by which an inactivating mutation in the
Gsa gene may lead to progressive heterotopic ossification of
deep connective tissues remains elusive, as it does for the
cutaneous and subcutaneous ossification seen characteristi-
cally in AHO. Such a mutation could plausibly lead to
altered regulation of cyclic AMP–mediated signal transduc-
tion in mesenchymal stem cells (Table 3). However, it is of
interest to note that a mouse model of AHO that contains a
heterozygous knockout of the GNAS1 gene shows no evi-
dence of heterotopic ossification.(80,99)

Somatic activating mutations of GNAS1 in patients with
the McCune-Albright Syndrome and germ line inactivating
mutations of GNAS1 in patients with AHO affect mesen-
chymal cells of both mesodermal and ectodermal origin.(81)
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Early developmental arrest of osteogenesis in affected
bones in the McCune-Albright Syndrome involves lineage
specification of mesenchymal precursor cells of ectodermal
and mesodermal origin under the influence of activating
mutations of GNAS1. By contrast, inactivating mutations of
GNAS1 lead to down-regulation of adenylyl cyclase cata-
lyzed pathways and to the apparent inappropriate recruit-
ment to an osteogenic lineage from pluripotent mesenchy-
mal cells. In the context of bone development, GNAS1 may
encode a negative regulator of the osteogenic lineage.

One hypothesis is that expression of the obligate bone-
specific transcription factor Cbfa1(100–106)in dermal fibro-
blasts or in mesenchymal stem cells residing in the skin
could result in dermal ossification. Inactivating GNAS1
mutations may induce alterations in the Cbfa1 pathway in
dermal fibroblasts; however, this link needs to be estab-
lished.

The importance and implications of understanding the
cause of POH are unassailable for the children who have the
condition. However, the importance of POH to medical
science is far greater than its extreme rarity might indicate.
POH is, in fact, an important disorder for specialists in
numerous fields, including the basic sciences of develop-
mental biology, cell biology, and molecular biology as well
as the clinical sciences of neonatal medicine, pediatrics,
dermatology, orthopedics, internal medicine, rheumatology,
and physical medicine and rehabilitation. By unraveling the
complex pathogenesis of POH and by more thoroughly
deciphering the molecular basis of gene expression involved
in directing the transformation of skin, fat, and muscle
precursor cells into bone, there is great hope that more
common disorders of osteogenesis will become understand-
able and treatable.

William Harvey, the discoverer of the circulation of the
blood, stated the following in 1657 in a letter to a fellow
physician: “Nature is nowhere accustomed more openly to
display her secret mysteries than in cases where she shows
traces of her workings apart from the beaten path, nor is
there any better method to advance the proper practice of
medicine than to give our minds to the discovery of the

usual law of nature by careful investigation of cases of rarer
forms of disease. For it has been found in almost all things
that what they contain that is useful or applicable is hardly
perceived unless we are deprived of them, or they become
deranged in some ways.”(107)

WHAT SUPPORT GROUPS ARE AVAILABLE
FOR PATIENTS WITH POH?

During the past decade, two dedicated support groups,
one for FOP and one for POH, have been established for
patients and families.

The International Fibrodysplasia Ossificans Progressiva
Association (IFOPA) is a nonprofit organization that sup-
ports research and education for patients with FOP and
served as a model organization for members of the POH
community. The IFOPA was founded in 1988 by Jeannie
Peeper, an adult with FOP, in order to end the social
isolation imposed by this rare and debilitating disease. To-
day, the IFOPA has nearly 200 members in over 25 coun-
tries. The IFOPA’s home page on the Worldwide Web
contains information about FOP, the IFOPA, and the inter-
national collaborative research project.“What is FOP? A
Guidebook For Families” is also available on the website.
The address for the site ishttp://www.IFOPA.org. Those
using email can contact the IFOPA at ifopa@vol.com. The
address of the IFOPA is Ms. Jeannie Peeper, President,
IFOPA, P.O. Box 196217, Winter Springs, FL 32719-6217.

The Progressive Osseous Heteroplasia Association
(POHA) is a nonprofit organization that supports research
and education for patients with POH. The POHA was
founded in 1995 by Fred Gardner, the grandfather of a child
with POH. Today, the POHA has approximately 25 mem-
bers. The POH Collaborative Research Project is an inter-
national group of physicians and scientists who work to-
gether on all clinical and basic aspects of the POH project.
The focus of the research is to identify the cause and to find
a cure for POH. Currently, the POHA does not have its own
newsletter but participates inThe FOP Connection,pub-

TABLE 3. POHAND VARIANTS: CLINICAL , PATHOLOGICAL, AND MOLECULAR FEATURES

Feature PHPIa PPHP
Patient 1

(Eddy et al, 2000)(95)
Patient 2

(Eddy et al, 2000)(95)
Patient 3

(Yeh et al, 2000)(96) POH

PTH resistance 1 2 2 1 2 2
AHO body habitus 1 1 6 1 2 2

Short stature
Round face
Brachydactyly

Cutaneous and subcutaneous
heterotopic ossification

1 1 1 1 1 1

Heterotopic ossification in
skeletal muscle and deep
connective tissue

2 2 1 1 1 1

Heterozygous loss of function
or expression of Gsa

1 1 1 1 1 ?

PHPIa, pseudohypoparathyroidism Ia; PPHP, pseudopseudohypoparathyroidism.
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lished quarterly by the IFOPA. “What Is POH? A Guide-
book for Families” (Kaplan, Wagman et al., 1997) is avail-
able through the POHA. The address of the POHA is Fred
Gardner, Executive Director, POHA, 33 Stonehearth
Square, Indian Head Park, IL 60525.
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